

# 3DOF Wheelchair Mounted Robotic Arm Exoskeleton

Thesis Defense

Allen Tan

Advisor: Dr. Kee Moon

Department of Mechanical Engineering San Diego State University June 12, 2015



### Overview

- Introduction
- Background/Literature Review
- Equipment
- Design
- Kinematic Modeling
- Dynamic Modeling
- PID Controller
- Gravity Compensation
- Determination of User Intent
- Conclusion
- Future Work



### Introduction

- Robotic Arm
  - 3 DOF
    - 2 at Shoulder
    - 1 at Elbow
  - Mounted on wheelchair

- Goal of Research:
  - Design a lightweight robotic arm exoskeleton



Robotic arm attached to wheelchair with user.



### Background: History of Robotics

- Definition of Robot
  - Comes from Czech word "robota," which means serf labor
- First mention of robot in Homer's *Illiad* 
  - Handmaidens for Hephaestus
- First industrial robot in 1961 Unimate
  - Used at General Motors(GE) for automobiles



Unimate in General Motors factory<sup>1</sup>.



### Background: Wearable Robots

- Definition
  - Improves and/or restores functionality of limb
- Three types
  - Empowering Robotic Exoskeletons
    - HAL (Hybrid Assistive Limb)
  - Orthotic Robots
    - ARMin
  - Prosthetic Robots
    - DEKA Arm



Dr. Sankai with HAL<sup>2</sup>.



DEKA Arm used to drink water<sup>3</sup>.

- 2. Sankai, Yoshiyuki. "Leading Edge of Cybernics: Robot Suit HAL." Paper presented at the 2006 SICE-ICASE International Joint Conference, Busan, South Korea, October 18-21, 2006.
- B. DEKA Research and Development Corporation. "The DEKA Arm." http://www.dekaresearch.com/deka arm.shtml.



# Equipment: Dynamixel MX-64R Overview

- Features
  - Built-in PID controller
  - Daisy-chain wiring
- Properties
  - Dimensions:40.2mm x 61.1 mm x 41mm
  - Weight: 135 g
  - Resolution 0.088°
  - Gear Ratio: 200:1
  - Stall Torque: 6 Nm
    - Recommended: 1.2 Nm
  - Max Speed: 63 rpm



MX-64R actuator<sup>4</sup>.



Daisy-chain of Dynamixels<sup>5</sup>.

- 4. ROBO- TIS. "MX-64T / MX- 64R e-Manual." http://support.robotis.com/en/product/dynamixel/mx series/mx-64.htm.
- 5. ROBOTIS. "Dynamixel." http://www.robotis.com/xe/dynamixel en.



# Equipment: Delsys Trigno Overview

- System for Surface Electromyography (sEMG)
- Features
  - Wireless
  - Rechargeable Battery
  - Built-in Accelerometers
- Properties
  - Transmission Range: 20 m
  - EMG Signal Sampling Rate:2000 samples/sec
  - EMG Signal Resolution: 16-bit





Delsys Trigno system<sup>6</sup>.



# Equipment: Delsys Trigno How It Works

#### **Sensor Placement**

#### **EMG Output**



Trigno sensor placement<sup>7</sup>.



Trigno EMG detection<sup>8</sup>.

- 7. Delsys. "Trigno Wireless System User's Guide." https://www.delsys.com/Attachments pdf/Trigno %20Wireless%20System%20Users%20Guide %20%28MAN-012-2-3%29.pdf.
- 8. Delsys. "Trigno Wire- less FAQ." https://www.delsys.com/Attachments pdf/Trigno %20FAQ%20%28DOC-208-1-0%29-web.pdf.



## Design: Frame



Annotated CAD model of robotic arm.



### Design: Arm Movements



Desired Arm Movements Possible with 3DOF Robotic Arm<sup>9</sup>.

9. Gopura, R.A.R.C. "A Study on Human Upper-Limb Muscles Activities." International Journal of Bioelectro- magnetism 12, no. 2 (2010): 54-61.



### Design: Safety

- Safety Features
  - Physical Stops

| Joint | Minimum Joint<br>Angle (deg) | Maximum Joint<br>Angle (deg) |
|-------|------------------------------|------------------------------|
| 1     | -90                          | 90                           |
| 2     | -102.78                      | 66.57                        |
| 3     | -20.91                       | 100.61                       |

#### Stops Through Software

| Joint | Minimum Joint<br>Angle (deg) |     |
|-------|------------------------------|-----|
| 1     | -90                          | 0   |
| 2     | -90                          | 0   |
| 3     | 0                            | -90 |



Arm cuff as part of link 3.

No straps



### Kinematic Modeling: Theory



Modified Denavit-Hartenberg parameters<sup>10</sup>.

Find position on robot w.r.t. Global Frame 0: 
$${}^{0}r_{p} = {}^{0}T_{B}{}^{n}r_{p}$$
 (1)

Series of Transformation Matrices: 
$${}^{0}T_{B} = {}^{0}T_{1}(q_{1}) {}^{1}T_{2}(q_{2}) {}^{2}T_{3}(q_{3}) \dots {}^{n-1}T_{n}(q_{n})$$
 (2)

Modified DH: 
$$i^{-1}T_i = R_{x_i,\alpha_{i-1}}D_{x_i,a_{i-1}}R_{z_i,\theta_i}D_{z_i,d_i} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & a_{i-1} \\ \sin\theta_i\cos\alpha_{i-1} & \cos\theta_i\cos\alpha_{i-1} & -\sin\alpha_{i-1} & -\sin\alpha_{i-1}d_i \\ \sin\theta_i\sin\alpha_{i-1} & \cos\theta_i\sin\alpha_{i-1} & \cos\alpha_{i-1} & \cos\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3)

10. Modified Denavit-Hartenberg parameters. Source: Craig, John J. Introduction to Robotics: Mechanics and Control. 3rd ed. Upper Saddle River: Prentice Hall, 2004.



### Kinematic Modeling: Parameters



0.5 0.4 0.3 0.2 Z-Direction (m) 0.1 -0.2 -0.3 -0.4 -0.5 -0.2 0.2 0.4 0.6 -0.40.8 X-Direction (m)

Joint 1 angle.

Joint 2 and joint 3 angles.

#### Modified DH Link Parameters.

| i | $a_{i-1}$ (cm) | $\alpha_{i-1}$ (deg) | $d_i$ (cm) | $\theta_i$ (deg) |
|---|----------------|----------------------|------------|------------------|
| 1 | 0              | 0                    | 0          | $\theta_1$       |
| 2 | 8.9954         | 90                   | 0          | $\theta_2$       |
| 3 | 26.1213        | 0                    | 0          | $\theta_3$       |



### Kinematic Modeling: Workspace

X-Y Plane

X-Z Plane



End-effector workspace in X-Y plane.



End-effector workspace in X-Z plane.



### Dynamic Modeling: Theory

Lagrangian:

$$L(q, \dot{q}) = T(q, \dot{q}) - U(q)$$

(4)

Total Kinetic Energy for Link *i*:

$$T_{i} = \frac{1}{2} (m_{i} v_{C_{i}}^{T} v_{C_{i}} + \omega_{i}^{T \ 0} I_{C_{i}} \omega_{i})$$

(5)

Sum of Total Kinetic Energies:

$$T = \sum_{i=1}^{n} T_i$$

(6)

Potential Energy for Link *i*:

$$U_i = m_i(-g^T p_{c_i})$$

(7)

Sum of Potential Energies:

$$U = \sum_{i=1}^{n} U_i$$

(8)

Euler-Lagrange:

$$\frac{d}{dt} \left[ \frac{\partial L(q, \dot{q})}{\partial \dot{q}_i} \right] - \frac{\partial L(q, \dot{q})}{\partial q_i} = \tau_i, \qquad i = 1, \dots, n$$

(9)

# Dynamic Modeling: Joint Torques Motor 1

$$\begin{aligned} \tau_1 &= \ddot{\theta}_1 \left[ \begin{array}{l} m_1 \frac{l_1^2}{4} + I_{zz_1} + m_2 \left( l_1 + \frac{l_2}{2} c \theta_2 \right)^2 + I_{xx_2} s^2 \theta_2 + I_{yy_2} c^2 \theta_2 + I_{xy_2} s(2\theta_2) \\ &+ m_3 \left( l_1^2 + l_2^2 c^2 \theta_2 + \frac{l_3^2}{4} c^2 \theta_{23} + 2 l_1 l_2 c \theta_2 + l_1 l_3 c \theta_{23} + l_2 l_3 c \theta_2 c \theta_{23} \right) \\ &+ I_{xx_3} s^2 \theta_{23} + I_{yy_3} c^2 \theta_{23} + I_{xy_3} s(2\theta_{23}) \right] \\ &+ \dot{\theta}_2 \left\{ - m_2 \dot{\theta}_1 l_2 \left( l_1 + \frac{l_2}{2} c \theta_2 \right) s \theta_2 + 2 \dot{\theta}_1 I_{xx_2} c \theta_2 s \theta_2 - 2 \dot{\theta}_1 I_{yy_2} c \theta_2 s \theta_2 \\ &+ 2 \dot{\theta}_1 I_{xy_2} c 2 \theta_2 + \dot{\theta}_2 I_{xz_2} c \theta_2 - \dot{\theta}_2 I_{yz_2} s \theta_2 \\ &+ m_3 \dot{\theta}_1 \left[ - 2 l_2^2 c \theta_2 s \theta_2 - \frac{l_3^2}{4} c \theta_{23} s \theta_{23} - 2 l_1 l_2 s \theta_2 - l_1 l_3 s \theta_{23} - l_2 l_3 s(2\theta_2 + \theta_3) \right] \\ &+ 2 \dot{\theta}_1 I_{xx_3} c \theta_{23} s \theta_{23} - 2 \dot{\theta}_1 I_{yy_3} c \theta_{23} s \theta_{23} + 2 \dot{\theta}_1 I_{xy_3} c(2\theta_{23}) \\ &+ (\dot{\theta}_2 + \dot{\theta}_3) I_{xz_3} c \theta_{23} - (\dot{\theta}_2 + \dot{\theta}_3) I_{yz_3} s \theta_{23} \right\} \\ &+ \ddot{\theta}_2 \left[ I_{xz_2} s \theta_2 + I_{yz_2} c \theta_2 + I_{xz_3} s \theta_{23} + l_2 l_3 c \theta_2 s \theta_{23} \right) + 2 \dot{\theta}_1 I_{xx_3} c \theta_{23} s \theta_{23} \\ &+ \dot{\theta}_3 \left[ - m_3 \dot{\theta}_1 \left( \frac{l_3^2}{2} c \theta_{23} s \theta_{23} + l_1 l_3 s \theta_{23} + l_2 l_3 c \theta_2 s \theta_{23} \right) + 2 \dot{\theta}_1 I_{xx_3} c \theta_{23} s \theta_{23} \\ &- 2 \dot{\theta}_1 I_{yy_3} c \theta_{23} s \theta_{23} + 2 \dot{\theta}_1 I_{xy_3} c(2\theta_{23}) + (\dot{\theta}_2 + \dot{\theta}_3) I_{xz_3} c \theta_{23} - (\dot{\theta}_2 + \dot{\theta}_3) I_{yz_3} s \theta_{23} \right] \\ &+ \ddot{\theta}_3 \left[ I_{xz_3} s \theta_{23} + 2 \dot{\theta}_1 I_{xy_3} c(2\theta_{23}) + (\dot{\theta}_2 + \dot{\theta}_3) I_{xz_3} c \theta_{23} - (\dot{\theta}_2 + \dot{\theta}_3) I_{yz_3} s \theta_{23} \right] \\ &+ \ddot{\theta}_3 \left[ I_{xz_3} s \theta_{23} + I_{yz_3} c \theta_{23} \right] \end{aligned}$$

# Dynamic Modeling: Joint Torques Motor 2

$$\begin{split} \tau_2 &= \ddot{\theta}_1 \left[ I_{xz_2} s \theta_2 + I_{yz_2} c \theta_2 + I_{xz_3} s \theta_{23} + I_{yz_3} c \theta_{23} \right] \\ &+ \dot{\theta}_2 \left[ \dot{\theta}_1 I_{xz_2} c \theta_2 - \dot{\theta}_1 I_{yz_2} s \theta_2 + \dot{\theta}_1 I_{xz_3} c \theta_{23} - \dot{\theta}_1 I_{yz_3} s \theta_{23} \right] \\ &+ \ddot{\theta}_2 \left[ m_2 \frac{l_2^2}{4} + m_3 \left( l_2^2 + l_2 l_3 c \theta_3 + \frac{l_3^2}{4} \right) + I_{zz_2} + I_{zz_3} \right] \\ &+ \dot{\theta}_3 \left[ -\frac{1}{2} m_3 l_2 l_3 s \theta_3 (2 \dot{\theta}_2 + \dot{\theta}_3) + \dot{\theta}_1 I_{xz_3} c \theta_{23} - \dot{\theta}_1 I_{yz_3} s \theta_{23} \right] \\ &+ \ddot{\theta}_3 \left[ \frac{1}{2} m_3 l_3 \left( l_2 c \theta_2 + \frac{l_3}{2} \right) + I_{zz_3} \right] \\ &+ m_2 \dot{\theta}_1 \frac{l_2}{2} \left( l_1 + \frac{l_2}{2} c \theta_2 \right) s \theta_2 - \dot{\theta}_1^2 I_{xx_2} c \theta_2 s \theta_2 + \dot{\theta}_1^2 I_{yy_2} c (2 \theta_2) s \theta_2 \\ &- \dot{\theta}_1^2 I_{xy_2} c (2 \theta_2) - \dot{\theta}_1 \dot{\theta}_2 I_{xz_2} c \theta_2 + \dot{\theta}_1 \dot{\theta}_2 I_{yz_2} s \theta_2 \\ &+ \frac{1}{2} m_3 \dot{\theta}_1^2 \left[ 2 l_2^2 c \theta_2 s \theta_2 + \frac{l_3^2}{2} c \theta_{23} s \theta_{23} + 2 l_1 l_2 s \theta_2 + l_1 l_3 s \theta_{23} + l_2 l_3 s (2 \theta_2 + \theta_3) \right] \\ &- \dot{\theta}_1^2 I_{xx_3} c \theta_{23} s \theta_{23} + \dot{\theta}_1^2 I_{yy_3} c \theta_{23} s \theta_{23} - \dot{\theta}_1^2 I_{xy_3} c (2 \theta_{23}) \\ &- \dot{\theta}_1 (\dot{\theta}_2 + \dot{\theta}_3) I_{xz_3} c \theta_{23} + \dot{\theta}_1 (\dot{\theta}_2 + \dot{\theta}_3) I_{yz_3} s \theta_{23} + m_2 g \frac{l_2}{2} c \theta_2 + m_3 g \left( l_2 c \theta_2 + \frac{l_3}{2} c \theta_{23} \right) \end{split}$$

# Dynamic Modeling: Joint Torques Motor 3

$$\tau_{3} = \dot{\theta}_{1} \left[ I_{xz_{3}} s \theta_{23} + I_{yz_{3}} c \theta_{23} \right]$$

$$+ \dot{\theta}_{2} \left[ \dot{\theta}_{1} I_{xz_{3}} c \theta_{23} - \dot{\theta}_{1} I_{yz_{3}} s \theta_{23} \right] + \ddot{\theta}_{2} \left[ m_{3} \frac{l_{3}}{2} \left( l_{2} c \theta_{2} + \frac{l_{3}}{2} \right) + I_{zz_{3}} \right]$$

$$+ \dot{\theta}_{3} \left[ -m_{3} \dot{\theta}_{2} l_{2} \frac{l_{3}}{2} s \theta_{3} + \dot{\theta}_{1} I_{xz_{3}} c \theta_{23} - \dot{\theta}_{1} I_{yz_{3}} s \theta_{23} \right] + \ddot{\theta}_{3} \left[ m_{3} \frac{l_{3}^{2}}{4} + I_{zz_{3}} \right]$$

$$+ \frac{1}{2} m_{3} \left[ \dot{\theta}_{1}^{2} \left( \frac{l_{3}^{2}}{2} c \theta_{23} s \theta_{23} + l_{1} l_{3} s \theta_{23} + l_{2} l_{3} c \theta_{2} s \theta_{23} \right) + \dot{\theta}_{2}^{2} l_{2} l_{3} s \theta_{3} + \dot{\theta}_{2} \dot{\theta}_{3} l_{2} l_{3} s \theta_{3} \right]$$

$$- \dot{\theta}_{1}^{2} I_{xx_{3}} c \theta_{23} s \theta_{23} + \dot{\theta}_{1}^{2} I_{yy_{3}} c \theta_{23} s \theta_{23} - \dot{\theta}_{1}^{2} I_{xy_{3}} c (2 \theta_{23})$$

$$- \dot{\theta}_{1} (\dot{\theta}_{2} + \dot{\theta}_{3}) I_{xz_{3}} c \theta_{23} + \dot{\theta}_{1} (\dot{\theta}_{2} + \dot{\theta}_{3}) I_{yz_{3}} s \theta_{23} + m_{3} g \frac{l_{3}}{2} c \theta_{23}$$

$$- \dot{\theta}_{1} (\dot{\theta}_{2} + \dot{\theta}_{3}) I_{xz_{3}} c \theta_{23} + \dot{\theta}_{1} (\dot{\theta}_{2} + \dot{\theta}_{3}) I_{yz_{3}} s \theta_{23} + m_{3} g \frac{l_{3}}{2} c \theta_{23}$$



### Dynamic Modeling: Linearization

Joint Accelerations:

$$\ddot{\theta} = M^{-1} \left[ \tau - C(\theta, \dot{\theta}) - G(\theta) \right]$$

(13)

Variables for Acceleration of Joint *i*:

$$\ddot{\theta}_i = f\left(\theta_1, \theta_2, \theta_3, \dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3, \tau_1, \tau_2, \tau_3\right)$$

(14)

**Equilibrium Point:** 

$$x^* = \begin{cases} \theta_{1_{eq}} \\ \theta_{2_{eq}} \\ \theta_{3_{eq}} \\ \dot{\theta}_{1_{eq}} \\ \dot{\theta}_{2_{eq}} \\ \dot{\theta}_{3_{eq}} \end{cases} = \begin{cases} 0 \\ -\frac{\pi}{2} \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

(15)

Taylor Series Approximation:

$$\ddot{\theta}_{i_{lin}} = \ddot{\theta}_i(x^*) + \frac{d\ddot{\theta}_i}{dx}(x - x^*), \text{ where } x = \begin{cases} \theta_2 \\ \theta_3 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{cases}$$
 (16)



### Dynamic Modeling: State-Space

$$\dot{\bar{x}} = [A]\bar{x} + [B]\tau \tag{17}$$

$$y = [C]\bar{x} + [D]\tau \tag{18}$$

State Vector 
$$(\bar{x})$$
:

$$\bar{x} = x - x^* = \begin{cases} \frac{\theta_1}{\theta_2} \\ \frac{\theta_3}{\theta_3} \\ \frac{\dot{\theta}_1}{\dot{\theta}_2} \\ \frac{\dot{\theta}_3}{\dot{\theta}_3} \end{cases} - \begin{cases} \frac{0}{-\frac{\pi}{2}} \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

State-Space Form of 3DOF System:

$$\begin{pmatrix}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3} \\
\ddot{\theta}_{1} \\
\ddot{\theta}_{2} \\
\ddot{\theta}_{3}
\end{pmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & -0.0955 & 0.7283 & 0 & 0 & 0 \\
0 & -52.5498 & 62.9780 & 0 & 0 & 0 \\
0 & 83.5340 & -270.7207 & 0 & 0 & 0
\end{bmatrix} \begin{pmatrix}
\theta_{1} \\
\theta_{2} + \frac{\pi}{2} \\
\theta_{3} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3}
\end{pmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
71.3072 & 0.3689 & -1.6052 \\
0.3689 & 51.7315 & -158.6295 \\
-1.6052 & -158.6295 & 618.1473
\end{bmatrix} (20)$$

(19)



# Dynamic Modeling: Linear Model Comparison with Non-linear Model – Motor 1

**Initial Joint 3 Angle of 5°** 

**Initial Joint 3 Angle of 10°** 



Response of joint 1 due to a non-equilibrium initial joint 3 angle of 5 degrees.



Response of joint 1 due to a non-equilibrium initial joint 3 angle of 10 degrees.



# Dynamic Modeling: Linear Model Comparison with Non-linear Model – Motor 2

**Initial Joint 3 Angle of 5°** 

**Initial Joint 3 Angle of 10°** 



Response of joint 2 due to a non-equilibrium initial joint 3 angle of 5 degrees.



Response of joint 2 due to a non-equilibrium initial joint 3 angle of 10 degrees.



# Dynamic Modeling: Linear Model Comparison with Non-linear Model – Motor 3

**Initial Joint 3 Angle of 5°** 

**Initial Joint 3 Angle of 10°** 



Response of joint 3 due to a non-equilibrium initial joint 3 angle of 5 degrees.



Response of joint 3 due to a non-equilibrium initial joint 3 angle of 10 degrees.



### PID Controller

#### **Block Diagram**



Block diagram of PID controller.

#### System Equation:

$$\tau = K_D \dot{E} + K_P E + K_i \int E dt$$

Error:

$$E = \theta_{desired} - \theta_{actual}$$

#### **Motor 1 Results**



Comparison of theoretical response and actual response for motor 1.



### PID Controller (cont.)

#### **Motor 2 Results**

#### **Motor 3 Results**



Comparison of theoretical response and actual response for motor 2.



Comparison of theoretical response and actual response for motor 3.



### **Gravity Compensation**

### Forces Due to Weight of Robot and Human Arm



Free body diagram about joint 2 for static position.

$$\tau_{2} = m_{ua}g \left( l_{2} - l_{uaCOM} \right) \cos \theta_{2} + m_{2}g \frac{l_{2}}{2} \cos \theta_{2}$$

$$+ m_{3}g \left( l_{2} \cos \theta_{2} + \frac{l_{3}}{2} \cos(\theta_{2} + \theta_{3}) \right) + m_{fh}g \left( l_{2} \cos \theta_{2} + l_{fhCOM} \cos(\theta_{2} + \theta_{3}) \right)$$
(21)



# Gravity Compensation Properties of Human Arm

#### **Properties of Upper Arm<sup>11</sup>**

# Property Mass Center of Mass from Acromion (Shoulder) Location of Center of Mass as a Ratio of Segment Size Value 1.73 kg 17.13 cm 51.30

#### **Properties of Forearm and Hand<sup>11</sup>**

| Property                                              | Value    |
|-------------------------------------------------------|----------|
| Mass                                                  | 1.483 kg |
| Center of Mass<br>from Radiale (Elbow)                | 16.21 cm |
| Location of Center of Mass as a Ratio of Segment Size | 62.58    |

11. Clauser, Charles, John McConville, and J.W. Young. Weight, Volume, and Center of Mass of Segments of the Human Body. Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratory, 1969.



# Gravity Compensation No Compensation with No Human Arm



Static joint 2 torque for no limb.



### Gravity Compensation Add Constant Force Spring

**Constant Force Spring** 



Side view of robotic arm with constant force spring.



Front view of robotic arm with constant force spring.



# Gravity Compensation Added Force Due to Constant Force Spring



Free body diagram about joint 2 for static position with CFS.

$$\tau_{2} = -m_{CFS}gl_{CFS}\cos\theta_{2} + m_{ua}g\left(l_{2} - l_{uaCOM}\right)\cos\theta_{2} + m_{2}g\frac{l_{2}}{2}\cos\theta_{2} + m_{3}g\left(l_{2}\cos\theta_{2} + \frac{l_{3}}{2}\cos(\theta_{2} + \theta_{3})\right) + m_{fh}g\left(l_{2}\cos\theta_{2} + l_{fhCOM}\cos(\theta_{2} + \theta_{3})\right)$$
(22)



### **Gravity Compensation**

Added Force Due to Constant Force Spring (No Limb)



Static joint 2 torque with CFS for no limb.



### **Gravity Compensation**

# Added Forces Due to Constant Force Spring (With Limb)

#### Joint 3 Angle Fixed at Zero



Static joint 2 torque with CFS and limb for joint 3 angle of zero.

#### Joint 2 Angle Fixed at Zero



Static joint 2 torque with CFS and limb for joint 2 angle of zero.

### User Intention: Torque Feedback Reduce System to 2DOF

### Reasoning

 Remove 3<sup>rd</sup> degree of freedom to simplify torque calculation about joint 2 (τ<sub>2</sub>)

#### Plan

- Solve for  $\tau_2$  from Lagrangian
- Compare theoretical joint torque results with actual joint torque results



CAD model of 2DOF system.



# User Intention: Torque Feedback Sensor Calibration



Torque sensor calibration.

# User Intention: Torque Feedback 2DOF Joint Torques

Lagrangian: 
$$L(q, \dot{q}) = T(q, \dot{q}) - U(q) \tag{23}$$

Lagrangian with no Kinetic Energy: 
$$L = -U$$
 (24)

Potential Energy for 2DOF System: 
$$U = -m_1 \vec{g}^{T_0} \vec{r}_{c_1} - m_2 \vec{g}^{T_0} \vec{r}_{c_2}$$
 (25)

Potential Energy for 2DOF Expanded:

$$U = -m_{1} \begin{bmatrix} 0 & 0 & -g \end{bmatrix} \begin{cases} L_{1_{COM_{x}}} \cos \theta_{1} - L_{1_{COM_{y}}} \sin \theta_{1} \\ L_{1_{COM_{x}}} \sin \theta_{1} + L_{1_{COM_{y}}} \cos \theta_{1} \end{cases}$$

$$-m_{2} \begin{bmatrix} 0 & 0 & -g \end{bmatrix} \begin{cases} L_{2_{COM_{x}}} c\theta_{1} c\theta_{2} - L_{2_{COM_{y}}} c\theta_{1} s\theta_{2} + L_{2_{COM_{z}}} s\theta_{1} + a_{1} c\theta_{1} \\ L_{2_{COM_{x}}} s\theta_{1} c\theta_{2} - L_{2_{COM_{y}}} s\theta_{1} s\theta_{2} - L_{2_{COM_{z}}} c\theta_{1} + a_{1} s\theta_{1} \end{cases}$$

$$-m_{1} \begin{bmatrix} (-g)L_{1_{COM_{z}}} \end{bmatrix} - m_{2} \begin{bmatrix} (-g)(L_{2_{COM_{x}}} s\theta_{2} + L_{2_{COM_{y}}} c\theta_{2}) \end{bmatrix}$$

$$= m_{1}gL_{1_{COM_{z}}} + m_{2}g\left(L_{2_{COM_{x}}} s\theta_{2} + L_{2_{COM_{y}}} c\theta_{2}\right)$$

$$(26)$$

# User Intention: Torque Feedback 2DOF Joint Torques (cont.)

Euler-Lagrange: 
$$\frac{d}{dt} \left[ \frac{\partial L(q, \dot{q})}{\partial \dot{q}_i} \right] - \frac{\partial L(q, \dot{q})}{\partial q_i} = \tau_i, \qquad i = 1, \dots, n$$
 (27)

Joint Torque 
$$i$$
: 
$$\tau_{i} = -\frac{\partial L}{\partial \theta_{i}}$$
$$= \frac{\partial}{\partial \theta_{i}} \left[ m_{1}gL_{1_{COM_{z}}} + m_{2}g \left( L_{2_{COM_{x}}}s\theta_{2} + L_{2_{COM_{y}}}c\theta_{2} \right) \right]$$
(28)

Joint Torque 1: 
$$\tau_1 = \frac{\partial}{\partial \theta_1} \left[ m_1 g L_{1_{COM_z}} + m_2 g \left( L_{2_{COM_x}} s \theta_2 + L_{2_{COM_y}} c \theta_2 \right) \right]$$

$$= 0 \tag{29}$$

Joint Torque 2: 
$$\tau_2 = \frac{\partial}{\partial \theta_2} \left[ m_1 g L_{1_{COM_z}} + m_2 g \left( L_{2_{COM_x}} s \theta_2 + L_{2_{COM_y}} c \theta_2 \right) \right]$$
$$= m_2 g \left( L_{2_{COM_x}} c \theta_2 - L_{2_{COM_y}} s \theta_2 \right)$$
(30)



# User Intention: Torque Feedback Results

#### Motor 1

#### Motor 2



Comparison of theoretical joint torque and actual joint torque for motor 1.



Comparison of theoretical joint torque and actual joint torque for motor 2.



## User Intention: Torque Feedback

### Load Information vs Position Information

Motor 1

Motor 2



Load information compared to position error for motor 1.



Load information compared to position error for motor 2.



# User Intention: EMG Feedback Sensor Placement for Wrist Extension

#### **Extensor Carpi Ulnaris**

#### **Wrist Extension**



EMG sensor placement for extensor carpi ulnaris muscle<sup>12</sup>.



Example of wrist extension<sup>13</sup>.

- 12. Cram, Jeffrey, Glenn Kasman, and Jonathan Holtz. "Atlas for Electrode Place- ment." In Cram's Introduction to Surface Electromyography, edited by Eleanor Criswell, 245-383. Sudbury: Jones and Bartlett Publishers, 2011.
- 13. University of Michigan. "Movements of the Upper Limb." Learning Modules Medical Gross Anatomy. Ann Arbor, 2002.



# User Intention: EMG Feedback Sensor Placement for Wrist Flexion

#### Flexor Carpi Ulnaris



EMG sensor placement for flexor carpi ulnaris muscle<sup>14</sup>.

#### **Wrist Flexion**



Example of wrist flexion<sup>15</sup>.

- 14. Cram, Jeffrey, Glenn Kasman, and Jonathan Holtz. "Atlas for Electrode Place- ment." In Cram's Introduction to Surface Electromyography, edited by Eleanor Criswell, 245-383. Sudbury: Jones and Bartlett Publishers, 2011.
- 15. University of Michigan. "Movements of the Upper Limb." Learning Modules Medical Gross Anatomy. Ann Arbor, 2002.



# User Intention: EMG Feedback Results for Wrist Extension

#### **Raw EMG**

### **EMG Squared**



Raw EMG of flexor carpi ulnaris and extensor carpi ulnaris muscles during wrist extension.



Squared EMG of flexor carpi ulnaris and extensor carpi ulnaris muscles during wrist extension.

Sample #



# User Intention: EMG Feedback Results for Wrist Flexion

#### **Raw EMG**

### **EMG Squared**



Raw EMG of flexor carpi ulnaris and extensor carpi ulnaris muscles during wrist flexion.





Squared EMG of flexor carpi ulnaris and extensor carpi ulnaris muscles during wrist flexion.



### Conclusion

- Importance
  - Growing need of wearable robots in healthcare
- Research
  - Lightweight device at the expense of torque
    - Tradeoff between portability and power
    - Constant force spring not enough to compensate
  - User Intent
    - Torque sensors do not provide a large enough resolution and are not accurate enough
    - Biosignals are a much more reliable method of determining user intent



### Future Work

- Improve model by including friction
  - Difficult to measure
  - Friction has many factors
  - Non-linear phenomenon
- Improve control by including actuator dynamics:
  - Including actuator dynamics makes system 3<sup>rd</sup> order
  - Tradeoff between model accuracy and controller simplicity
- Torque compensation for joint 2
  - Different motor
    - Possible option: Dynamixel Pro Series

